terça-feira, 29 de março de 2016

Prof. Bruno Resolve - Matemática - VI - Questões recentes da FGV

06)  [Médias] (Fiscal de Posturas - Pref. Niterói - FGV/2015) A média das idades dos cinco jogadores mais velhos de um time de futebol é 34 anos. A média das idades dos seis jogadores mais velhos desse mesmo time é 33 anos.
A idade, em anos, do sexto jogador mais velho desse time é:
(A) 33;  (B) 32;  (C) 30;  (D) 28;  (E) 26.

Solução: 1) (a + b + c + d + e) / 5 = 34  → a + b + c + d + e = 34 . 5 = 170;
2) (a + b + c + d + e + f) / 6 = 33
Como a + b + c + d + e = 170, substituindo na igualdade acima, vem: (170 + f) / 6 = 33 →  170 + f = 198 → f = 28.
GABARITO: D

07)  [Probabilidade] (Fiscal de Posturas - Pref. Niterói - FGV/2015) Uma urna contém apenas bolas brancas e bolas pretas. São vinte bolas ao todo e a probabilidade de uma bola retirada aleatoriamente da urna ser branca é 1/5.  Duas bolas são retiradas da urna sucessivamente e sem reposição. A probabilidade de as duas bolas retiradas serem pretas é:

Solução: 1) Se há 20 bolas ao todo e a probabilidade de ser retirada uma bola branca é 1/5, então há 20 : 5 = 4 bolas brancas e 20 - 4 = 16 pretas;
2) Logo, a probabilidade de as duas bolas retiradas serem pretas é 16/20 x 15/19 = 4/5 x 15/19 = 12/19.

08)  [Sequências] (Fiscal de Posturas - Pref. Niterói - FGV/2015) A sequência 2, 2, 1, 5, 5, 5, 5, 5, 2, 2, 1, 5, 5, 5, 5, 5, 2, ... mantém o padrão apresentado indefinidamente. A soma dos 2015 primeiros termos dessa sequência é:
(A) 7560;  (B) 7555;  (C) 7550;  (D) 7545;  (E) 7540.

Solução: 1) A sequência possui um grupo de 8 algarismos que se repete indefinidamente: 2, 2, 1, 5, 5, 5, 5, 5. A soma dos algarismos em cada grupo é 2 + 2 + 1 + 5 + 5 + 5 + 5 + 5 = 30.
2) Dividindo 2015 por 8, obtemos quociente 251 e resto 7. Isso quer dizer que escrevemos o grupo 2, 2, 1, 5, 5, 5, 5, 5 um total de 251 vezes, e ainda os 7 termos iniciais do que seria a 252ª repetição.
3) Logo, a soma pedida é 251 x 30 + 2 + 2 + 1 + 5 + 5 + 5 + 5 = 7555.
GABARITO: B

09)  [Áreas] (Fiscal de Posturas - Pref. Niterói - FGV/2015) Um triângulo e um quadrado têm perímetros iguais. Os lados do triângulo medem 7,3 m, 7,2 m e 5,5 m. A área do quadrado, em metros quadrados, é:
(A) 20,00;  (B) 22,50;  (C) 25,00;  (D) 25,60;  (E) 26,01.

Solução: 1) Perímetro do triângulo: 7,3 + 7,2 + 5,5 = 20 m;
2) Perímetro do quadrado: 20 : 4 = 5 m;
3) Área do quadrado: 5 x 5 = 25 metros quadrados.
GABARITO: C

10)  [Operações Fundamentais] (Fiscal de Posturas - Pref. Niterói - FGV/2015) Pablo compra balas no atacado a R$ 24,00 o quilo e revende essas balas em pequenos pacotes de 50 gramas cada um a R$ 2,00 o pacote. No mês de setembro, Pablo teve um lucro de R$ 1.000,00 com a venda dessas balas. A quantidade, em quilos, que Pablo vendeu dessas balas em setembro foi:
(A) 120;  (B) 104,5;  (C) 88,5;  (D) 62,5;  (E) 60.

Solução: 1) Note que 1kg = 1000 g, logo, cada quilo de balas comprado permitiu fazer 1000 : 50 = 20 pacotes.
2) Esses 20 pacotes geram uma receita de 20 x 2 = 40 reais e um lucro de 40 - 24 = 16 reais. Ou seja, cada quilo vendido gera um lucro de 16 reais.
3) Como o lucro foi de 1000 reais, a quantidade de quilos pedida é 1000 : 16 = 62,5.
GABARITO: D

11)  [O Primeiro Grau] (Fiscal de Posturas - Pref. Niterói - FGV/2015) Mauro comprou duas canetas e três borrachas por R$ 37,50. Fátima comprou, na mesma loja, três canetas e quatro borrachas por R$ 54,00. Nessa loja todas as canetas têm o mesmo preço; também têm o mesmo preço todas as borrachas. Nessa mesma loja, cinco canetas e duas borrachas custam:
(A) R$ 87,50;  (B) R$ 82,00;  (C) R$ 77,00;  (D) R$ 74,50;  (E) R$ 69,00.

Solução: 1) Podemos escrever que 2c + 3b = 37,50 e 3c + 4b = 54.
Multiplicando a primeira equação por 3 e a segunda por 2, temos:
6c + 9b = 112,50 e 6c + 8b = 108.
2) Subtraindo a segunda equação da primeira, vem: (6c - 6c) + (9b - 8b) = 112,50 - 108 → b = 4,50.
3) Logo: 3c + 4b = 54 → 3c + 4 . 4,50 = 54 → 3c + 18 = 54 → 3c = 36 → c = 12.
4) Daí, 5c + 2b = 5 . 12 + 2 . 4,50 = 69 reais.
GABARITO: E

12)  [Números Racionais] (Fiscal de Posturas - Pref. Niterói - FGV/2015) Fidípides caminhou durante 2 horas e 15 minutos a uma velocidade constante de 8 km/h e, a seguir, correu durante 1 hora e 40 minutos a uma velocidade constante de 15 km/h. A distância total percorrida por Fidípides, em quilômetros, foi:
(A) 43;  (B) 42;  (C) 41;  (D) 40;  (E) 39.

Solução: 1) Note que 15 minutos é a quarta parte de 1 hora. Logo, na primeira etapa ele percorreu 2 x 8 + 8 : 4 = 18 km;
2) Note agora que 40 min equivalem a 2/3 de 60 min: 40/60 = 4/6 = 2/3.
Assim, na segunda etapa ele percorreu 15 + 2/3 . 15 = 15 + 10 = 25 km.
Ao todo, 18 + 25 = 43 km.
GABARITO: A

13)  [O Primeiro Grau] (Fiscal de Posturas - Pref. Niterói - FGV/2015) A idade de Pedro hoje, em anos, é igual ao dobro da soma das idades de seus dois filhos, Paulo e Pierre. Pierre é três anos mais velho do que Paulo. Daqui a dez anos, a idade de Pierre será a metade da idade que Pedro tem hoje. A soma das idades que Pedro, Paulo e Pierre têm hoje é:
(A) 72;  (B) 69;  (C) 66;  (D) 63;  (E) 60.

Solução: 1) Podemos montar as seguintes equações:
pe = 2(pa + pi);
pi = pa + 3;
pi + 10 = pe / 2.
2) Vamos isolar pa na segunda equação: pi - 3 = pa.
3) Substituindo pa por pi - 3 na primeira equação, temos:
pe = 2(pi - 3 + pi) → pe = 2(2pi - 3) → pe = 4pi - 6;
4) Substituindo pe por 4pi - 6 na terceira equação, vem:
pi + 10 = (4pi - 6) / 2 →  2(pi + 10) = 4pi - 6 →  2pi + 20 = 4pi - 6 →  26 = 2pi → 13 = pi.
5) Logo, pe = 4 . 13 - 6 = 46 e pa = 13 - 3 = 10.
6) A soma pedida é 13 + 46 + 10 = 69.
GABARITO: B

Nenhum comentário:

Postar um comentário